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Abstract. The Mining Mart project’ (Enabling End-User Data Ware-
house Mining) proposes a case-based reasoning system for maximum
support of end users during data preprocessing. Our approach 1) uses
a case base for efficient support for data preprocessing, respectively the
persistent storage of cases as metadata, 2) machine learning tools for
preprocessing, and 3) generates views as results of preprocessing opera-
tors. The stored metadata will be used by all system components during
execution. This ensures reusability and automation of a KDD-process
and conceals deep data mining knowledge from end users. The execution
of cases takes place within a database server and guarantees proper han-
dling of large amounts of data. Therefore, preprocessing operators must
be implemented within the database server. In the Mining Mart project
we did implement and apply such ”database” operators and achieved
good results on real business data.

In this paper, we will demonstrate how to receive a high level of au-
tomation and reusability of a KDD-process, based on metadata-driven
preprocessing. End users will gain increased flexibility and transparency.
The resulting time and cost savings will make the KDD-process applica-
ble in industrial companies.

1 Introduction

Practical experiences [8] have shown that 50-80% of the efforts for knowledge
discovery are spent on data preprocessing. It requires profound business, data
mining and database know-how. The support of existing KDD-systems for data
preprocessing is still not satisfying for end users.

Mining Mart provides a user-friendly environment to perform preprocessing
for data mining on the basis of a case-based reasoning framework[5]. The frame-
work provides cases that are already successfully applied, as well as system com-
ponents to develop new cases. Considering all individual tasks of a KDD-process,
we can identify user types with different background knowledge. The framework
should offer appropriate support for any user type. Within this paper, a business
case is the technical solution of a business task that is stored in the framework of
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the case base. It can either be re-applied without any changes or re-used within
the specification phase of a new case.

The development process of a business case consists of three parts: specifica-
tion, compilation and execution. The specification phase is most time consuming
and requires profound knowledge in business data and data mining techniques.
To guarantee reusability of a case, the specification must be persistently stored
within the framework. Mining Mart system components automatically compile
the specification and create code to be executed within a database server. The
execution within the database server allows to manage large amounts of data,
i.e. of a data warehouse.

In the Mining Mart project we have developed a Meta Model for storing all
kinds of metadata within a KDD-process. Metadata exist about 1) the business
case, 2) the preprocessing steps and their operators, and 3) the business data.

The remainder of this paper is organized as follows: the next section explains
the KDD-process regarding reusability and easy adaptation of a case. In section 3
we consider data mining specific requirements for metadata. Section 4 introduces
the Mining Mart architecture and the Meta Model. In section 5 we will present
a short application example. We will show the realization-process for a business
task within the framework and concrete possibilities for reuse. Section 6 shows
the related work and section 7 concludes the paper.

2 Reusability of a KDD-Process

Nowadays business data of companies is reaching the amount of giga- and ter-
abytes. The force to efficiently use information out of this huge amount of data
is growing, too. But getting this information should be as quick and cheap as
possible. Typically, companies consult external data mining experts and their
experience to achieve good results. The goal of Mining Mart is to enable in-
house people without profound data mining knowledge to gather high-quality
information.

2.1 Requirements

If we want to broaden the usage of data mining as analysis method for business
data in companies, we have to offer reusability of business domain knowledge as
well as technical knowledge about a KDD-process. The reusability effort should
be automatically supported by a system. A knowledge exchange should take
place between experts and end users (implicitly by using the system) and also
between experts. Such an exchange will motivate experts to publish their knowl-
edge. Therefore, reusability of a KDD-process should fulfill two main goals:

First, the support data mining experts: Experts can gain domain knowledge
of a business case from other experts by using an existing case during the spec-
ification phase. The system should support experts in giving advices for proper
applicability of machine learning tools. Sharing this expert knowledge could re-
sult in time and cost savings when designing a new case and, more important,
should enrich the knowledge of every single expert.
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Fig. 1. Who stores Metadata in the System

Second, reusability respectively re-application of an existing case: Changes in
the business data, either the underlying data schema or data contents, should be
handled automatically by the system whenever possible. At that point massive
cost savings could be achieved and data mining could become a real cost effective
method. No data mining expert should be necessary any more as far as data
mining results are understandable to end users? and the re-application-process
should be much faster. While the proper design of a case will take up to several
months, the pure re-application should take hours or days, depending on the
amount of data and the efficiency of the underlying database server.

2.2 The Role of Metadata
Figure 1 shows, who delivers what kind of knowledge.

— Business data metadata: Information about business data is often available
as data objects and their attributes, e.g. in data warehouses or metadata
repositories. It can be automatically collected by the system. Otherwise, a
database manager, who is specialized in describing business data, has to
manually add metadata.

— Operator metadata: Knowledge about machine learning tools only exist as
individual tool expert knowledge or tool specifications. This knowledge can-
not be transferred automatically into the system. It has to be described as
metadata by tool experts. Within the Mining Mart project, metadata about
a set of the most important tools will be developed. Later on, tool experts
have to use a defined interface to bring new tools and their metadata into
the system.

— Business case metadata: Information about the KDD-process solving a spe-
cific business task only exists as individual knowledge of data mining experts
being nowadays data mining consultants. To get this knowledge as metadata,
experts have to specify new business cases.

2 In Mining Mart we focus on preprocessing and not on handling mining tools and
results. For post-processing and presentation see [3].



Who uses the metadata:

— Data mining experts implicitly use metadata of existing cases and of opera-
tors by getting system support within the specification phase of new cases.

— End users use metadata when identifying an existing case as THE proper
case to solve their specific business task or to re-apply an existing case on
changed data contents.

— Only the system uses metadata explicitly. By checking the applicability of
a preprocessing operator, it supports the data mining expert. By compiling
all preprocessing operator specifications into executable code whenever the
chain is applied it enhances reusability on changed data contents.

3 Data Mining Specific Metadata

Within a KDD-process several data preprocessing steps are necessary until the
actual data mining tool can be applied. In the Mining Mart project we have
defined these steps as a preprocessing chain (Figure 3) that is a directed acyclic
graph (DAG). This chain consists of several operators, which work on data and
produce several intermediate results and the final result. Every operator trans-
forms data for a special purpose, for example improve data quality by replacing
missing values or reduce data amount by selecting a special data segment. Data
mining experts need 1) knowledge about the data so that they can formulate
the transformation purpose, 2) knowledge about the operator so that they can
decide, which operator is applicable to reach the identified purpose, and 3) sup-
port if actual data does not fit the input requirements of an operator. Then, an
intermediate operator must transform data into the proper input format for the
next operator.

Operator Metadata about functional applicability and input requirements:
All available operators within the system are grouped into classes with different
functionality. In Mining Mart, we have identified the following classes: ” Feature
Construction”, ”Multi Relational Feature Construction”, ”Feature Selection”,
”"Row Selection” and ”Time Operator”. Based on this classification the search
for a proper operator is triggered by the intended data transformation purpose.
A preprocessing operator can be seen as a transformation function with input
and output parameters. Therefore, business data to be transformed are also
parameters.

Data Metadata about operator applicability and data contents: Within the
Mining Mart system, business data is stored in a database. Necessary metadata
about these tables (basic business data, coming from e.g. a data warehouse)
or views (results of preprocessing operators) are name and datatype of all at-
tributes. The system uses this information for checking operator applicability.
To support data mining experts in identifying the next data transformation pur-
pose, statistic information for all data tables/views exist. It contains the number
of data rows, number of different or missing data values and distribution infor-
mation about every data attribute.
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Fig. 2. Mining Mart Architecture

Business Case Metadata about a business case and the DAG of prepro-
cessing operators: It conceals data mining techniques and domain knowledge of
business data from end users. Based on this information end users are able to
identify a case as THE proper mining solution for their business task. In Mining
Mart, we supply a textual/graphical description that will be defined by data
mining experts during the case specification phase. Information about the DAG
enables system automation for re-application of a business case.

4 Mining Mart System

4.1 Mining Mart Architecture

Figure 2 shows the system components and how they use or create metadata.

Editor The graphical user interface for both data mining experts and end
users is the editor. The system offers different functionality for these user types:

First, a data mining expert will use the editor for developing a new business
case and iteratively defining the proper preprocessing chain. Only the ”correct”
chain will be stored as metadata. During the specification phase it may happen
that the data mining expert defines a preprocessing operator but after execu-
tion the operator must be deleted again because of a dissatistfying result (Figure
3). Therefore, metadata and intermediate results must be easily editable. When
deleting an operator step, all succeeding related operators and intermediate re-
sults will be automatically deleted.

Second, an end user will use the editor for visualizing a defined preprocessing
chain. He cannot make changes within the chain. He is only able to re-apply the
complete chain and look at chain descriptions and the final result. The system
checks case applicability and marks all steps having invalidated conditions that
the data mining expert can take over the case again and redesign the invalid
parts.

A preprocessing chain has different states that are defined by data mining
experts and used by the system:



operator | ty@rggr {1 operator !
Business
Data Result Result Result

| P P i Mining
operator | i operator i i operator | i operator i

Fig. 3. Specification process of a Preprocessing Chain

During the specification phase, a chain has the state DesignAndTest. That
means, the chain is not completely designed yet. Every operator can be executed
separately. If the operator is of type machine learning, the editor starts the ML-
Tool. Then the business data of this operator will mostly be a data sample.

When the specification phase is terminated, the data mining expert sets the
state to Application. That means, the chain will be published in the case base.
Therefore, every other user, end user or other data mining expert, will be able
to use the chain for his purpose. Executing such a chain will apply all its steps
without intermediate stop.

MetaData-Compiler The MD-Compiler will be started by the editor. It
is a powerful tool to generate optimized SQL-code out of the stored operator
metadata following the sequence of the DAG of a chain. For every operator that
has as output an intermediate result, the compiler will generate a view within the
database and store the metadata about this new view in the metadata-schema.

During DesignAndTest-state of a chain, SQL-code will be generated for all
operators. When reaching the node of an operator of type machine learning
a ML-Tool has to be applied. After the tool execution, parameters exist that
are used for the appropriate manual operator in the next iteration of the design
process. Only steps 1 to 3 of Figure 4 are applied. During Application-state, SQL-
code will be generated for the complete operator chain. If an operator is of type
machine learning, the re-execution of the ML-tool and afterwards the generation
of the corresponding manual operator is necessary. All steps of Figure 4 illustrate
this process.

ML-Tool A ML-Tool can be used as preprocessing operator and as mining
tool. In this paper we will concentrate only on preprocessor operators. The tool
must transform and store the learned results as metadata that the MD-Compiler
is able to generate SQL-code for the corresponding manual operator.

4.2 Meta Model

The Meta Model[10] is an intermediate result of the Mining Mart project and
currently enriched with all operator specifications by the Mining Mart project
partners. It will be finished in June 2001 as public Deliverable 8 and 9.



Preprocessing-Operator: Discr etization

Precondition: Input datais available

1. Editor starts ML-Tool for Discretization with a sample factor

2. ML-Tool reads sample amount of data directly from the corresponding database view

3. ML-Tool writes the result (several discretization values for the discretized attribute)
into metadata-schema

4. Editor starts MD-Compiler for manual operator of Discretization

5. MD-Compiler creates SQL-code for the new, discretized attribute, using a decode-
function and the stored parameters from the ML-Tool. The result view, in which this
attribute will be used, can be applied on the complete data set.

Fig. 4. ML-Tool Used as Preprocessing Operator

We have developed the Meta Model to efficiently store the different aspects
of metadata. First metadata is grouped into a conceptual and implementational
layer and second into a data and case layer. The user only works with the con-
ceptual layer. The underlying implementational layer is almost completely used
by the system. The separation in data and case layer results in a better under-
standing of the KDD-process. The Meta Model is the heart within the Mining
Mart system to make it very flexible and scalable. Every system component uses
it independently and could be easily exchanged by another component. A new
component can be integrated by using the Meta Model, too.

Conceptual Case Layer In the conceptual case layer (right part of Figure
5), all operators within a preprocessing chain are stored. The class step defines
the DAG of a chain. The functional purpose of operators is given by group-
ing them into different operator classes. The class parameter is the interface
to the conceptual data layer specifying parameters of an operator. That means
data types of operator parameters are implicitly defined. Because every operator
has at least one output parameter, the parameter class also defines the result
data-set of an operator. The relation to ezecutionElement is the interface to the
implementational case layer.

Conceptual Data Layer In the conceptual data layer (left part of Figure
5), business data is described as concepts with one or more featureAttributes. For
every feature attribute a data type is necessary. This specification allows later an
automatic checking of operator input requirements by the system. An operator
parameter can be of the type concept, featureAttribute or relation (interface to
conceptual case layer). Concept and featureAttribute build also the interface to
the implementational data layer. The interface to the implementational case
layer is shown in the relation to ezecutionElement.

Every concept specified by the user must be integrated into an ontology (see
Figure 6). Three different ontology-levels exist: base level, database level and
mining level. The base level reflects a general mining terminology and enables
exchangeability of business cases between companies. Concepts of this type have
no connection to the implementational layer. Concepts of the database level are
represented within the database as tables, concepts of mining level as views. Both
are connected to the implementational layer by a relation to the corresponding
columnSets. Concepts of the database level need a connection to their super-
concepts of type base level. Concepts of the type mining level are automatically
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created by operators and are always sub-concepts of type database levels. When
a chain of state Application is re-applied all concepts of type mining level will
be re-generated by the MD-Compiler.

Implementational Data Layer In the implementational data layer (left
part of Figure 7), metadata about business data is stored. Every columnSet has
exactly one relation to class concept of type database level or mining level, every
column to class featureAttribute. These classes are the interface to the conceptual
data layer. For columnSet and column statistics are calculated.

Implementational Case Layer In the implementational case layer (right
part of Figure 7), information about operator execution is stored. In this layer,
the different operator types (manual or machine learning) are distinguished. The
executionElement has a relation to columnSet and operator to build the interface
to the implementational data layer and conceptual case layer.

5 From a Business Task to Mining-Relevant Business
Data

In this example, we introduce a real business task from Swiss Life showing all
necessary preprocessing steps and metadata that has to be defined by the data
mining expert. We show possibilities how to re-use a completely developed pre-
processing chain.

The business task is ”Potential Risk Groups for Customer Surren-
ders”. In an insurance company, a customer buys an insurance but after several
years he may sell the contract back to the company. Normally the reasons are
not known. If the insurance company would have knowledge about potential risk

groups it could better interact and maybe save customer losses.
Business Task

Identify target concept Contracts
Identify target featureAttribute hasSurrendered
Identify analysis period Year 2000

Identify other necessary concepts  Person, Product, SalesRepresentative

As underlying datamodel for this business task, we consider all contracts
that are valid at beginning of the analysis period. We take all relevant infor-
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mation about contract, person, product and salesRepresentative at that time.
Next, we mark contracts with a surrender during analysis period. Then, we look
at changes during the year by taking the same contract, person, product and
salesRepresentative information at the end of the analysis period or at surrender
date. Last, we can construct change-information by comparing the information
at the beginning and end. Finally, we have a data basis with all relevant in-
formation describing possible reasons for customer surrender: marked contracts
with actual surrender and customer-initiated changes that could be indicators
for future surrenders.

Preprocessing Operators Following some operators of the business task
are described as pseudo-code functions of preprocessing operators®:

1. Get all relevant contracts and their information at analysis begin
FeatureConstruction (I_C Contract, O_FA contractDuration(I_FA beginDate, I_FA endDate),
O_FA actualDuration(I_FA beginDate, I_.FA sysDate), O_C Contract);
FeatureSelection (I_C Contract, O_FA contractDuration, O_FA actualDuration,
O_FA lifeInsuranceSum, O_FA premium, O_FA paymentType,
0O_C ContractFeatures);
RowSelection (I_C ContractFeatures, O_C Contracts2000,
Constr (01012000 < contractChangeDate < 31122000));
2. Get all person information for these contracts
MultiRelFeatureConstr (I_C Contracts2000, I R Person_Contract, O_FA age, O_FA gender,
O_FA placeOfResidence, O_-C Contracts2000,
Constr (0101200 < personChangeDate < 31122000));
3. Mark surrendered contracts in analysis period
MultiRelFeatureConstr (I-C Contracts2000, I_R, Contracts2000_Contract, O _FA isSurrendered,
O_FA surrenderDate, O_C Contracts2000,

3 1.C = Input parameter of type Concept, I_FA = Input parameter of type Feature
Attribute, I R = Input parameter of type Relation, O FA = Output parameter
of type Feature Attribute, O_C = Output parameter of type Concept, Constr =
Constraint
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Constr (01012000 < surrenderDate < 31122000));

4. Get contract information at end of analysis period or surrender date

MultiRelFeatureConstr (I-C Contracts2000, I_R Contracts2000_Contract,
O_FA endLifeInsuranceSum, O _FA endPaymentType, O_FA endPremium,
0O_C Contracts2000, Constr (contractChangeDate < 31122000));

5. Get change-information

FeatureConstruction (I_C Contracts2000, O_FA changeLifeInsuranceSum, O_FA changePremium,
O_FA changePaymentType, O_FA changePlaceOfResidence,
O_C Contracts2000

6. Discretize attribute lifeInsuranceSum

FeatureConstruction (I_C Contracts2000, O_FA lifeInsuranceSumDiscr,
O_C Contracts2000, Constr (10 groups));

The example shows that every preprocessing operator needs an input and
an output concept. These parameters specify the data to be transformed and
the result concept. Especially operator 1 is defined very precisely. The newly
created feature attribute contractDuration is a function that calculates this at-
tribute from the two input attributes beginDate and endDate. The other oper-
ators give an overview to complete the business task. After the preprocessing
chain is specified, all mining relevant attributes are available. For the actual
classification problem, a mining tool for subgroup discovery can be applied, e.g.
MIDOS [11].

Just by storing this chain within the metadata-schema, an easy re-use and
re-application is given.

The concepts contract and person (in the example implicitly used by the
relation Person_Contract) are of type database level within the concept ontology
(see Figure 6). When the data mining expert defines such concepts, he also has
to map them to the base ontology level. If a chain is transferred to another
company or data warehouse, all metadata from the conceptional case layer and
only concepts of type base ontology level from the conceptual data layer have
to be taken. To re-install it on the new place, a concept mapping from the base
level to the new database level and to the implementational layer is necessary.
All other metadata as well as the re-application itself is not affected by this
transfer.



6 Related Work

The focus of Mining Mart is a user-friendly and efficient KDD-environment for
data preprocessing that enables re-use and automation. To fulfill these goals,
several aspects have to be considered:

Ensuring re-application of business cases means storing process steps as meta-
data. Within the data warehouse field several ETL-tools (Extract, Transform,
Load) like Powermart (Informatica, http://www.informatica.com) or Datastage
(Ardent, http://www.ardentsoftware.com) exist that use metadata for data trans-
formation. But these tools can only perform general-purpose operators for data
processing like filter, aggregation and join. Other transformations have to be pro-
grammed manually and are working on a low-level (data rows instead of data
concepts). Operators specific for data mining preprocessing are not supported
(neither manual operators nor those that use machine learning tools).

Applying preprocessing on large amounts of data requires execution within
a database server. This approach takes the advantages of a database server for
optimized handling of large amounts of data. As a result network traffic for
data decreases. Many existing data mining environments generally support only
internal preprocessing where data must be loaded into a KDDSE. That limits
preprocessing on the available size of main memory.

Announcements from SPSS (SPSS, http://www.spss.com) Clementine-Server
and Oracle Darwin (Oracle, http://otn.oracle.com/products/datamining) pro-
pose the execution of all preprocessing operators within a database server, too.
In Mining Mart intermediate results consist only of views and not of tables. View
specifications of the required data are stored whereas in tables the data itself is
duplicated. That provides the user with a high flexibility during the specification
phase of a preprocessing chain. Intermediate results can easily be deleted by just
dropping the view specification. No physical data has to be deleted.

7 Conclusion

Making a preprocessing process time efficient and user-friendly requires a shared
knowledge pool, where users can exchange and create KDD-experience in form
of business cases. For this purpose metadata play THE important rule. We have
described a Meta Model and metadata-driven system components that allow
users to share their knowledge in a user-friendly way. The technical implemen-
tation should guarantee maximal performance by using a database server for
handling large amounts of data. Furthermore, it should support the user in op-
erator applicability. And last but not least, it should automate the re-use of an
existing preprocessing chain and this results in huge time savings.

The heart of the system is the introduced Meta Model. It is the base for all
described requirements like user-friendliness, applicability on large data bases
and re-usability. Challenge of Mining Mart at this phase of the project will be
the implementation of the different system components that are based on the
Meta Model.
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